Science

Timeline of the Universe from Big Bang to present
Chronology of the universe as deduced by the prevailing Big Bang theory, a result from science and obtained knowledge

Science is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.[1][2]

The earliest roots in the history of science can be traced to Ancient Egypt and Mesopotamia in around 3000 to 1200 BCE.[3][4] Their contributions to mathematics, astronomy, and medicine entered and shaped Greek natural philosophy of classical antiquity, whereby formal attempts were made to provide explanations of events in the physical world based on natural causes.[3][4] After the fall of the Western Roman Empire, knowledge of Greek conceptions of the world deteriorated in Western Europe during the early centuries (400 to 1000 CE) of the Middle Ages,[5] but was preserved in the Muslim world during the Islamic Golden Age.[6]

The recovery and assimilation of Greek works and Islamic inquiries into Western Europe from the 10th to 13th century revived "natural philosophy",[5][7] which was later transformed by the Scientific Revolution that began in the 16th century[8] as new ideas and discoveries departed from previous Greek conceptions and traditions.[9][10] The scientific method soon played a greater role in knowledge creation and it was not until the 19th century that many of the institutional and professional features of science began to take shape;[11][12] along with the changing of "natural philosophy" to "natural science".[13]

Modern science is typically divided into three major branches:[14] natural sciences (e.g., biology, chemistry, and physics), which study the physical world; the social sciences (e.g., economics, psychology, and sociology), which study individuals and societies;[15][16] and the formal sciences (e.g., logic, mathematics, and theoretical computer science), which study formal systems, governed by axioms and rules.[17][18] There is disagreement whether the formal sciences are science disciplines,[19][20][21] because they do not rely on empirical evidence.[22][20] Applied sciences are disciplines that use scientific knowledge for practical purposes, such as in engineering and medicine.[23][24][25]

New knowledge in science is advanced by research from scientists who are motivated by curiosity about the world and a desire to solve problems.[26][27] Contemporary scientific research is highly collaborative and is usually done by teams in academic and research institutions,[28] government agencies, and companies.[29][30] The practical impact of their work has led to the emergence of science policies that seek to influence the scientific enterprise by prioritizing the development of commercial products, armaments, health care, public infrastructure, and environmental protection.

  1. ^ Wilson, E.O. (1999). "The natural sciences". Consilience: The Unity of Knowledge (Reprint ed.). New York: Vintage. pp. 49–71. ISBN 978-0-679-76867-8.
  2. ^  Heilbron, J.L.; et al. (2003). "Preface". The Oxford Companion to the History of Modern Science. New York: Oxford University Press. pp. vii–x. ISBN 978-0-19-511229-0. ...modern science is a discovery as well as an invention. It was a discovery that nature generally acts regularly enough to be described by laws and even by mathematics; and required invention to devise the techniques, abstractions, apparatus, and organization for exhibiting the regularities and securing their law-like descriptions.
  3. ^ a b "The historian ... requires a very broad definition of "science" – one that ... will help us to understand the modern scientific enterprise. We need to be broad and inclusive, rather than narrow and exclusive ... and we should expect that the farther back we go [in time] the broader we will need to be."  p.3—Lindberg, David C. (2007). "Science before the Greeks". The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second ed.). Chicago: University of Chicago Press. pp. 1–20. ISBN 978-0-226-48205-7.
  4. ^ a b Grant, Edward (2007). "Ancient Egypt to Plato". A History of Natural Philosophy: From the Ancient World to the Nineteenth Century (First ed.). New York: Cambridge University Press. pp. 1–26. ISBN 978-0-521-68957-1.
  5. ^ a b Lindberg, David C. (2007). "The revival of learning in the West". The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second ed.). Chicago: University of Chicago Press. pp. 193–224. ISBN 978-0-226-48205-7.
  6. ^ Lindberg, David C. (2007). "Islamic science". The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second ed.). Chicago: University of Chicago Press. pp. 163–92. ISBN 978-0-226-48205-7.
  7. ^ Lindberg, David C. (2007). "The recovery and assimilation of Greek and Islamic science". The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (2nd ed.). Chicago: University of Chicago Press. pp. 225–53. ISBN 978-0-226-48205-7.
  8. ^ Principe, Lawrence M. (2011). "Introduction". Scientific Revolution: A Very Short Introduction (First ed.). New York: Oxford University Press. pp. 1–3. ISBN 978-0-19-956741-6.
  9. ^ Lindberg, David C. (2007). "The legacy of ancient and medieval science". The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (2nd ed.). Chicago: University of Chicago Press. pp. 357–368. ISBN 978-0-226-48205-7.
  10. ^ Grant, Edward (2007). "Transformation of medieval natural philosophy from the early period modern period to the end of the nineteenth century". A History of Natural Philosophy: From the Ancient World to the Nineteenth Century (First ed.). New York: Cambridge University Press. pp. 274–322. ISBN 978-0-521-68957-1.
  11. ^ Cahan, David, ed. (2003). From Natural Philosophy to the Sciences: Writing the History of Nineteenth-Century Science. Chicago: University of Chicago Press. ISBN 978-0-226-08928-7.
  12. ^ Lightman, Bernard (2011). "13. Science and the Public". In Shank, Michael; Numbers, Ronald; Harrison, Peter (eds.). Wrestling with Nature: From Omens to Science. Chicago: University of Chicago Press. p. 367. ISBN 978-0-226-31783-0.
  13. ^ Harrison, Peter (2015). The Territories of Science and Religion. Chicago: University of Chicago Press. pp. 164–165. ISBN 978-0-226-18451-7. The changing character of those engaged in scientific endeavors was matched by a new nomenclature for their endeavors. The most conspicuous marker of this change was the replacement of "natural philosophy" by "natural science". In 1800 few had spoken of the "natural sciences" but by 1880, this expression had overtaken the traditional label "natural philosophy". The persistence of "natural philosophy" in the twentieth century is owing largely to historical references to a past practice (see figure 11). As should now be apparent, this was not simply the substitution of one term by another, but involved the jettisoning of a range of personal qualities relating to the conduct of philosophy and the living of the philosophical life.
  14. ^ Cohen, Eliel (2021). "The boundary lens: theorising academic actitity". The University and its Boundaries: Thriving or Surviving in the 21st Century 1st Edition. New York: Routledge. pp. 14–41. ISBN 978-0-367-56298-4. Archived from the original on May 5, 2021. Retrieved May 4, 2021.
  15. ^ Colander, David C.; Hunt, Elgin F. (2019). "Social science and its methods". Social Science: An Introduction to the Study of Society (17th ed.). New York, NY: Routledge. pp. 1–22.
  16. ^ Nisbet, Robert A.; Greenfeld, Liah (October 16, 2020). "Social Science". Encyclopedia Britannica. Encyclopædia Britannica, Inc. Archived from the original on February 2, 2022. Retrieved May 9, 2021.
  17. ^ Löwe, Benedikt (2002). "The formal sciences: their scope, their foundations, and their unity". Synthese. 133 (1/2): 5–11. doi:10.1023/A:1020887832028. S2CID 9272212.
  18. ^ Rucker, Rudy (2019). "Robots and souls". Infinity and the Mind: The Science and Philosophy of the Infinite (Reprint ed.). Princeton, New Jersey: Princeton University Press. pp. 157–188. ISBN 978-0-691-19138-6. Archived from the original on February 26, 2021. Retrieved May 11, 2021.
  19. ^ Bishop, Alan (1991). "Environmental activities and mathematical culture". Mathematical Enculturation: A Cultural Perspective on Mathematics Education. Norwell, Massachusetts: Kluwer Academic Publishers. pp. 20–59. ISBN 978-0-7923-1270-3. Archived from the original on December 25, 2020. Retrieved March 24, 2018.
  20. ^ a b Nickles, Thomas (2013). "The Problem of Demarcation". Philosophy of Pseudoscience: Reconsidering the Demarcation Problem. Chicago: The University of Chicago Press. p. 104.
  21. ^ Bunge, Mario (1998). "The Scientific Approach". Philosophy of Science. Vol. 1, From Problem to Theory (revised ed.). New York: Routledge. pp. 3–50. ISBN 978-0-7658-0413-6.
  22. ^ Fetzer, James H. (2013). "Computer reliability and public policy: Limits of knowledge of computer-based systems". Computers and Cognition: Why Minds are not Machines. Newcastle, United Kingdom: Kluwer Academic Publishers. pp. 271–308. ISBN 978-1-4438-1946-6.
  23. ^ Fischer, M.R.; Fabry, G (2014). "Thinking and acting scientifically: Indispensable basis of medical education". GMS Zeitschrift für Medizinische Ausbildung. 31 (2): Doc24. doi:10.3205/zma000916. PMC 4027809. PMID 24872859.
  24. ^ Sinclair, Marius (1993). "On the Differences between the Engineering and Scientific Methods". The International Journal of Engineering Education. Archived from the original on November 15, 2017. Retrieved September 7, 2018.
  25. ^ Bunge, M (1966). "Technology as applied science". In Rapp, F. (ed.). Contributions to a Philosophy of Technology. Theory and Decision Library (An International Series in the Philosophy and Methodology of the Social and Behavioral Sciences). Dordrecht, Netherlands: Springer. pp. 19–39. doi:10.1007/978-94-010-2182-1_2. ISBN 978-94-010-2184-5.
  26. ^ MacRitchie, Finlay (2011). "Introduction". Scientific Research as a Career. New York: Routledge. pp. 1–6. ISBN 978-1-4398-6965-9. Archived from the original on May 5, 2021. Retrieved May 5, 2021.
  27. ^ Marder, Michael P. (2011). "Curiosity and research". Research Methods for Science. New York: Cambridge University Press. pp. 1–17. ISBN 978-0-521-14584-8. Archived from the original on May 5, 2021. Retrieved May 5, 2021.
  28. ^ de Ridder, Jeroen (2020). "How many scientists does it take to have knowledge?". In McCain, Kevin; Kampourakis, Kostas (eds.). What is Scientific Knowledge? An Introduction to Contemporary Epistemology of Science. New York: Routledge. pp. 3–17. ISBN 978-1-138-57016-0. Archived from the original on May 5, 2021. Retrieved May 5, 2021.
  29. ^ Lindberg, David C. (2007). "Islamic science". The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second ed.). Chicago: University of Chicago Press. pp. 163–192. ISBN 978-0-226-48205-7.
  30. ^ Szycher, Michael (2016). "Establishing your dream team". Commercialization Secrets for Scientists and Engineers. New York: Routledge. pp. 159–176. ISBN 978-1-138-40741-1. Archived from the original on August 18, 2021. Retrieved May 5, 2021.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne